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1. What do you need to be happy?

2. Long term happiness with your app?

3. How to get and stay there?







Business & 
Creating Value



Product creation is hard iterative process



Long term happiness 
with your app?







Making and 
keeping your 
feedback loop fast 
and reliable



Know your pipeline
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Measure everything



Have a goal



Parallelize 



Eliminate waste

Setup Actual useful work - running tests Teardown



Common setup phase 
anti-patterns

- Not caching your dependencies
- Using inefficient dependency management 

system
- Installing unnecessary dependencies
- Migrating databases in inefficient ways
- Slow Docker image builds



Unreliable - Flaky tests

Setup Actual useful work - running tests Teardown



Flaky tests



Flaky tests

- Finding them & doing forensic work
- Saving debugging information - logs and pictures
- SSH Debugging in real-time
- Documenting & keeping track of them



Flaky tests - FIXING them

The first appearance of a flaky test is 
the best moment to fix it.



Flaky tests - Determining the cause and 
fixing the test

- Environmental differences
- Non-deterministic code
- Asynchronous wait
- Concurrency
- Order dependency



Flaky tests - Environmental differences

- Operating system
- Libraries
- Environment variables
- Number of CPUs
- Network speed



Flaky tests - Non-deterministic code

- dates, random values or remote services



Flaky tests - Asynchronous wait

Use polling or callbacks



Flaky tests - Concurrency

Concurrency can be responsible for flakiness due to 
deadlocks, race conditions, leaky implementations, or 
implementations with side effects. The problem stems 
from using shared resources.



Flaky tests - Order dependency

Root of the problem - tests depend on shared mutable 
data

it('Subscribes to newsletter', () => { 
…

it('Unsubscribes from newsletter', () => { 
…



Questions




