
Optimizing for 
Happiness and Speed

Darko Fabijan



Who am I?
Darko Fabijan
Co-founder & CTO @ Semaphore CI

Novi Sad, Serbia
@darkofabijan



1. What do you need to be happy?

2. Long term happiness with your app?

3. How to get and stay there?







Business & 
Creating Value



Product creation is hard iterative process



Long term happiness 
with your app?







Making and 
keeping your 
feedback loop fast 
and reliable



Know your pipeline

2008 2011 2019 2022 2022 2023

TDD & BDD

Semaphore 
Launched

Semaphore 
2.0

Semaphore 
On-Prem

Semaphore 
Score 

R&D around 
DORA 
metrics

…



Measure everything



Have a goal



Parallelize 



Eliminate waste

Setup Actual useful work - running tests Teardown



Common setup phase 
anti-patterns

- Not caching your dependencies
- Using inefficient dependency management 

system
- Installing unnecessary dependencies
- Migrating databases in inefficient ways
- Slow Docker image builds



Unreliable - Flaky tests

Setup Actual useful work - running tests Teardown



Flaky tests



Flaky tests

- Finding them & doing forensic work
- Saving debugging information - logs and pictures
- SSH Debugging in real-time
- Documenting & keeping track of them



Flaky tests - FIXING them

The first appearance of a flaky test is 
the best moment to fix it.



Flaky tests - Determining the cause and 
fixing the test

- Environmental differences
- Non-deterministic code
- Asynchronous wait
- Concurrency
- Order dependency



Flaky tests - Environmental differences

- Operating system
- Libraries
- Environment variables
- Number of CPUs
- Network speed



Flaky tests - Non-deterministic code

- dates, random values or remote services



Flaky tests - Asynchronous wait

Use polling or callbacks



Flaky tests - Concurrency

Concurrency can be responsible for flakiness due to 
deadlocks, race conditions, leaky implementations, or 
implementations with side effects. The problem stems 
from using shared resources.



Flaky tests - Order dependency

Root of the problem - tests depend on shared mutable 
data

it('Subscribes to newsletter', () => { 
…

it('Unsubscribes from newsletter', () => { 
…



Questions




