
© 2023 Percona1



Cloud-native Postgres 
observability: from client apps to 
underlying cloud resources

Peter Zaitsev, 
Co-Founder at Coroot 
April 17, 2024



My Journey with 
Observability
• I am a “Database Guy” 

• Databases are very capable when used right 

• App developers often prefer to abuse the databases 

• While not understanding they are doing that 

• Because of poor Observability 

• Bad Performance, Unhappy Users, Downtime,  Money 
Wasted as Result 

• Observability – essential component of well-
designed architecture 

3



A while ago, systems using Postgres

4

• A monolith application 

• DB runs on dedicated nodes 

• If something goes wrong: 
• Check the app’s logs/metrics 
• Check the DB’s logs/metrics 
• Check the hardware



Modern systems

5

• Hundreds or even thousands of services dynamically allocated to nodes 

• Nodes are dynamic and can appear and disappear 

• Network-attached volumes 

• If something goes wrong: 
• Troubleshooting follows the system’s topology 
• Analysis of extensive telemetry, from application latency to EBS 

performance



Modern Systems

•Siloed Knowledge 
•Siloed Responsibility 
•Siloed Monitoring Systems 
•Finding out the problematic component can be 
harder than fixing the issue

6



Observability is …

7

… being able answer questions about your system: 

• How is the system performing right now? 

• How does its performance compare to an hour ago? 

• Why are some requests failing? 

• Why are certain requests taking longer than expected? 

• Observability is most valuable during system failures or issues, so we 
should think of it by considering failure scenarios



What can possibly go wrong here?

8

• The app is not available 

• The DB is not available 

• Network connectivity issues between the app and the DB  

• Network delay between the app and the DB 

• The DB responses slowly 

• The DB rejects connections from the app 

• ...



When we only look at the DB, we don't see the big picture

9

• Error counters are not available in pg_stat_* 

• Per-client query statistics are not provided in pg_stat_* 

• Query latency in pg_stat_statements doesn’t include network latency



“The customer is always right”

10

• Let’s consider databases as utility services 

• The Service Level metrics (availability, latency) should be measured on the 
client’s side 

• The database-side metrics are needed to “explain” the DB’s behavior, e.g., 
why the DB is rejecting connections or performing slowly.



Client-side query statistics

11

What we want to know: 

• The number of queries from a given app instance to a particular DB 
instance 

• Errors (TCP level, L7-protocol level) 

• Latency 

How we can gather these statistics: 

• Instrumenting apps with OpenTelemetry SDKs 

• Using eBPF to capture queries made by every process/container to 
measure the statistics



Instrumenting apps with OpenTelemetry 

12

• OpenTelemetry is a vendor-neutral framework for instrumentation 
applications, including database calls 

• SDKs are available for many programming languages and frameworks 

• It wraps every database call to gather statistics



Instrumenting apps with OpenTelemetry 

13

With distributed tracing we can know exactly what’s happened with any given 
request



Challenges associated with Distributed Tracing

14

• Huge volume of telemetry data 

• Hard to achieve 100% coverage without blind spots (e.g., legacy services) 

• Requires code changes and application deployments 

• Potential overhead



eBPF-based instrumentation

15

• An agent captures network calls from each process running on the node 

• It parses L7 protocols including Postgres Wire Protocol 

• Doesn’t require code changes, so can instrument even legacy and 3rd-party 
services 

• Can be integrated in minutes 

• Can capture stats even within SSL-enabled connections 

• Query latency contains network latency since it’s measured on client’s side 

• Doesn’t affect application latency* 

Open-source implementations supporting Postgres: Coroot, Pixie, eCapture 

* https://coroot.com/docs/coroot-community-edition/getting-started/performance-impact



eBPF-based instrumentation

16

Capturing System Calls: 

• connect(): obtaining PID, FD, destination IP:PORT, and status. 

• write(), writev(), sendmsg(), sendto(), SSL_write(), read(), readv(), 
recvmsg(), recvfrom(), SSL_read(): monitoring for Postgres protocol frames



eBPF-based instrumentation

17

Postgres Protocol Parsing:  

• Identifying Postgres protocol frames requires parsing only ~10 bytes of 
payload in kernel-space 

• Payloads (up to 1kB) are transferred to user-space along with (PID, FD, 
timestamp, payload) 

• Client app container is resolved using PID 

• Connection destination IP:PORT is resolved using PID + FD 

• If tracing is enabled, payload parsing extracts query text  

• For prepared statements, the agent maintains a mapping of statement_id 
to statement_text



eBPF: performance impact

18

The Linux kernel ensures minimal interruption to kernel code execution by validating 
each eBPF program before execution: 

• Program must have a finite complexity.  

• The verifier evaluates all possible execution paths within configured upper 
complexity limits 

Communication between kernel-space and user-space programs occurs through a 
ring buffer: 

• If the user-space program delays data reading, it may miss data due to 
overwriting 

For observability, it’s a great deal: although we might lose some telemetry data, 
we can be sure that there is no impact on performance



eBPF-based metrics

19

We know how each application instance communicates with each DB 
instance: 

• Queries per second 

• Errors  

• Latency



eBPF-based traces

20

• Traces are extremely useful for identifying the particular queries within an 
anomaly 

• They also provide a more granular distribution of queries by latency and 
status



Postgres metrics

21

eBPF-based metrics and traces can’t answer all questions: 

• Why is the database performing slower than before? 

• Why is the database rejecting new client connections? 

While eBPF-based metrics can highlight what is happening, to answer WHY it’s 
happening, we need to collect other metrics.



Why are my queries executed slower that usual?

22

• A lack of CPU time 
• Node CPU capacity 
• Resource limits leading to CPU throttling 
• Resource contention caused by other applications 
• Resource contention caused by other queries 

• Issues related to I/O performance 
• Volume I/O capacity (Block storage I/O limits, hardware performance) 
• High I/O latency, particularly with network-attached volumes 
• Resource contention due to other applications 
• Resource contention due to other queries 
• Using temp files due to insufficient work_mem 

• Locks



CPU related metrics: CPU delay

23

• The Linux kernel reports CPU delay, indicating how long a specific process or 
container has been waiting for CPU time 

• For instance, if you observe a delay of 150ms per second, it signifies that you are 
experiencing an additional latency of 150ms, which is spread across all queries 
processed during that wall-clock second 

• Next steps: check CPU throttling, node CPU usage, other CPU consumers



CPU related metrics: CPU throttling

24

• When a container hits its CPU limit and exhausts the allowed CPU bandwidth, it 
gets throttled for the remainder of that period.  

• This introduces additional latency spread across all queries processed during 
that wall-clock second. 

• If a container is CPU-limited (throttled), the CPU delay metric will also increase



CPU related metrics: CPU usage

25

• Node CPU capacity always is limited 

• Processes on the same node compete for CPU time 

• In dynamic environments like Kubernetes, it's useful to track CPU usage per 
application running on a node to explain any CPU usage anomalies



CPU related metrics: CPU usage by queries

26

• Postgres doesn’t count CPU usage by queries 

• To roughly estimate that we can use total query execution time 

• pg_stat_statements provides statistics only for finished queries 

• To get visibility into long-running queries that are not finished yet, we need to 
merge statistics from pg_stat_statements and pg_stat_activity



pg_stat_statement visibility

27

• Only displays finished queries 

• Queries that finish with errors/timeout are not taken into account



pg_stat_activity visibility

28

• Doesn’t track history 

• Hard to track short-lived queries



pg_stat_statements + pg_stat_activity 

29

• To achieve full query visibility, we implemented an open-source (Apache 2.0) 
Prometheus metric exporter for Postgres 

• It aggregates data from pg_stat_statements and pg_stat_activity to provide 
accurate metrics about queries, whether they are completed or still running 

• Fully integrated with Coroot (Apache 2.0) 

https://github.com/coroot/coroot-pg-agent 

https://github.com/coroot/coroot

https://github.com/coroot/coroot-pg-agent


Explaining a CPU anomaly

30



I/O related metrics: I/O latency

31

• An average time spent doing read and write operations



I/O related metrics: I/O utilization %

32

• Total number of seconds the disk spent doing I/O 

• E.g., if the derivative of this metric for a minute interval is 60s, this means 
that the disk was busy 100% of that interval.



I/O related metrics: IOPS

33

• Total number of reads or writes completed successfully. 



I/O related metrics: I/O bandwidth

34

• Total number of bytes read from the disk or written to the disk



Explaining an I/O anomaly

35



How to be able to 
solve the issue ?

• Ensure your observability is complete, 
with no blind spots 

• Ensure you have tools to reliably 
identify the components experiencing 
issues 

• Use skill-appropriate tools, less can be 
more in the time crunch  

• Have evidence for escalation to 
another team or vendor 

36



Thank you, Let’s Connect!

https://www.linkedin.com/in/peterzaitsev/ 

https://twitter.com/PeterZaitsev 

http://www.peterzaitsev.com

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/

