
.

.

What Developers
Should Know about Observability

Peter Zaitsev,
Co-Founder at Coroot
March 4, 2025

Let’s Get
to Know
You

3

What is Observability?

4

What Is
Observability

5

Evolution of
the
Applications

6

2000s

2020s

Why Observability?

• Availability
• Performance
• Cost Management
• Security

7

Tasks
Observability
Helps with

• Reactive
• Troubleshooting and

Optimization
• Proactive

• Finding Problems
before they are Big
Problems

8

Alerting

Notifies when Problem
happens
Ensures the Right Escalation
happens and the problem
is resolved

9

4 Pillars of
Observability

• Metrics
• Logs
• Tracing
• Profiling

10

What is
the Most
Useful?

11

Metrics
• High Level overview
• How many requests/sec

there are happening?
• How many errors?
• Is the Host Down?
• 1000s of metrics may be

collected every second
• Displayed on hundreds of

graphs

12

Logs
• Structured and Unstructured Format
• Have detailed information on what is

happening
• Error logs – contain detailed information

about cause of errors
• Expensive to Produce
• Expensive to Store and Analyze
• Sampling and Filtering is often used

13

Distributed
Tracing
• Tracks Application Requests as they

Pass through the system
• Tricky as we need to pass some

Trace_ID between different services
• Span – Named, Timed Operation which

represents part of Workflow
• Great for Root Cause Analyses
• Often Sampled
• Expensive to produce and store

14

Distributed Tracing Example

15

Profiling
• Where CPU Time or Wall Clock time is

Spent
• Single Service or Distributed
• Language Developer can Understand
• Comparisons are very helpful
• Programming language specific support

needed

16

eBPF Based CPU Profiling in
Coroot

17

Profiling:
Comparison
Mode

18

19

Instrumentation extended.mp4

http://drive.google.com/file/d/1I2ReUjcpwx426hJuvQPQuAFwJvIfFiAI/view

Types of
Instrumentation
• Static Instrumentation

• Specific Places in the Code can
Produce Metrics, Emit Logs, Traces

• Linux ProcFS
• Dynamic Instrumentation

• Allow Instrumentation “anything”
dynamically

• dTrace, eBPF

20

21

observability tech2 extended.mp4

http://drive.google.com/file/d/1C6hWbO8uZstXcJT0d5Kd_WHGrxzUz5ME/view

Prometheus
• Metrics Capture and

Processing
• OpenMetrics merged here
• Client Libraries for many

programming languages
• Easy way to expose Metrics

from your Application
• Coding Required

22

Open Telemetry
(OTEL)

• Collection of APIs, SDKs and Tools
• To Instrument, Generate, Collect

and Export Telemetry Data
• Covers Metrics, Logs, Traces
• Formed through merger of

OpenTracing and OpenCensus
projects

• Coding Required

23

eBPF (Extended
Berkley Packet Filter)

• Not Just Observability
• Dynamic Instrumentation
• User Space and Kernel Space
• Efficient
• Safe
• No Coding Required

24

eBPF
Illustrated
https://ebpf.io/what-is-ebpf/

25

https://ebpf.io/what-is-ebpf/

Typical SLIs (Service Level Indicators)
• Rate of Requests

• Hard to define what is norm, through anomaly detection can help
• Availability

• Error Rate; High Latency Becomes Error at certain point
• Request Latency

• Looking at 99% or more; Often with breakdown

26

Observability
Problems

27

28

hard to deploy2 extended.mp4

http://drive.google.com/file/d/1TeEpMum2zQPeEvrOrFzXV0Aq6SLS1xN7/view

Hard to cover all
of Infrastructure
Many solutions support only some
kinds of infrastructure well

29

Swiss Cheese
Observability

Full of Holes!

30

Hard to
Use
Overwhelming
amount of hard to
understand data

31

Silos
• Large organizations have

many groups with different
responsibilities

• Multiple Vendors responsible
for different parts of
infrastructure

• Often using different tools
• Blame game and

responsibility avoidance is
common

32

Noise
• Too much Noise in Alerting
• Team Fatigue and

Burnout
• Alerts being Ignored or

Mishandled
• Increased Downtime
• Poor User Experience

33

Overhead
Instrumentation Slow things down
Observability data hard to store and process
Inadequate Level of Instrumentation

34

Cost
• Proprietary and Cloud

Observability solutions
can get super expensive

• Why do you think Cisco
bought Splunk ?

• High Costs drive
Observability Choices

• Need Open Source,
Efficient Solutions

35

Coroot – Looking to Solve Some of Those

36

Coroot
Editions
Open Source
Enterprise

37

https://coroot.com/

https://coroot.com/

eBPF Magic
• Automatic Instrumentation with eBPF
• Use to together with conventionally

exposed Linux Data
• Instrument SSL Calls
• L7 Protocol Decoding

38

eBPF-based metrics

39

Node Types & Costs for major
clouds

40

Handling
Observability
Problems

41

Hard to Deploy
No Code, No Configuration to get 90% of the

Value

42

Hard to cover all the
Infrastructure

Cover Kubernetes, Containers, Cloud, VM, Bare Metal

43

Hard to Use
Less Raw Data, More
Actionable Insights

44

Silos
• Complete

Infrastructure and
App Coverage

• Evidence based
Root Cause
Analyses

45

Noise Focus on Objective
Measures rather than
Vanity Ratios

46

Overhead
• eBPF – Modern Technology designed

for speed
• Heavily Optimized Open Source

Agents

47

Cost
• Roll your own
• Flexible data retention options
• State of Art Data Storage Technologies

48

Words of Advice

• Ensure your observability is complete,
with no blind spots

• Ensure you have tools to reliably
identify the components experiencing
issues

• Use skill-appropriate tools, less can be
more in the time crunch

• Have evidence for escalation to
another team or vendor

49

In partnership with

Thank you!
Let’s Connect!

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev

http://www.peterzaitsev.com

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/

	Slide 1
	Slide 2: What Developers Should Know about Observability
	Slide 3: Let’s Get to Know You
	Slide 4: What is Observability?
	Slide 5: What Is Observability
	Slide 6: Evolution of the Applications
	Slide 7: Why Observability?
	Slide 8: Tasks Observability Helps with
	Slide 9: Alerting
	Slide 10: 4 Pillars of Observability
	Slide 11: What is the Most Useful?
	Slide 12: Metrics
	Slide 13: Logs
	Slide 14: Distributed Tracing
	Slide 15: Distributed Tracing Example
	Slide 16: Profiling
	Slide 17: eBPF Based CPU Profiling in Coroot
	Slide 18: Profiling: Comparison Mode
	Slide 19
	Slide 20: Types of Instrumentation
	Slide 21
	Slide 22: Prometheus
	Slide 23: Open Telemetry (OTEL)
	Slide 24: eBPF (Extended Berkley Packet Filter)
	Slide 25: eBPF Illustrated
	Slide 26: Typical SLIs (Service Level Indicators)
	Slide 27: Observability Problems
	Slide 28
	Slide 29: Hard to cover all of Infrastructure
	Slide 30: Swiss Cheese Observability
	Slide 31: Hard to Use
	Slide 32: Silos
	Slide 33: Noise
	Slide 34: Overhead
	Slide 35: Cost
	Slide 36: Coroot – Looking to Solve Some of Those
	Slide 37: Coroot Editions
	Slide 38: eBPF Magic
	Slide 39: eBPF-based metrics
	Slide 40: Node Types & Costs for major clouds
	Slide 41: Handling Observability Problems
	Slide 42: Hard to Deploy
	Slide 43: Hard to cover all the Infrastructure
	Slide 44: Hard to Use
	Slide 45: Silos
	Slide 46: Noise
	Slide 47: Overhead
	Slide 48: Cost
	Slide 49: Words of Advice
	Slide 50

