M, ALY,

PERCONA
UNIVERSITY

IN PARTNERSHIP WITH: ‘ @

Red Hat FerretDB

coroot ~#

What Developers
Should Know about Observability

(A

Peter Zaitsey,
%1 Co-Founder at Coroot
e March 4, 2025

. e || .
oy |

Let's Get
to Know
You

What is Observability?

e You

)

what is observability

ChatGPT

Observability is a concept in systems theory and engineering that refers to the ability to understand the
internal state of a system based on its external outputs. In simpler terms, it's about how well you can
observe and understand what's happening inside a system just by looking at its behavior from the

outside.

In software engineering and computer science, observability is particularly important in the context of
complex distributed systems, where traditional debugging techniques might not be sufficient. It
involves collecting and analyzing data from various sources such as logs, metrics, traces, and events to

gain insights into the performance, health, and behavior of the system.

What Is
Observability

et i i T — e T T —————

Evolution of - ()
the e L :
Applications

Why Observability?

- Availability
« Performance
« Cost Management

* Security

Tasks
Observability
Helps with

 Reactive
 Troubleshooting and
Optimization
 Proactive

* Finding Problems
before they are Big
Problems

COVIMAND=CONQUER

RECYAFERIFS

o ~ &Y
AN : y’ us_\\ —
A N v v T 77’
oo A4 8% a Sy ;\OZ’ !)
8 % B O " N .
= 2 Rege - A9 ! ? Z
/) |\ ea) 4 - \ . ¢
B 8 \ 7 vy
3 & L O~ % ’ p | A -
- N // i ... \) 2
S NN A / - \ s X
v) o, / P\ 5
7) - 3 Yy ’ ’
L Jok / > ;
O\ y/
\ &

Notifies when Problem
happens

Ensures the Right Escalation
happens and the problem
is resolved

4 Pillars of
Observability |

 Metrics
* Logs

 Tracing
» Profiling

aﬁ Peter Zaitsev « You
: g Entrepreneur | Driving Success with MySQL, MariaDB, MongoDB & Post...

\
1d+ &

o
W h q t I S What is most important pillar of Observability ? #observability

What is most important pillar of #observability

t h e M o St You can see how people vote. Learn more

Q Metrics @ 51%
U Sefu I o Traces @ 13%
Logs @ 26%
Profiling @ 10%

220 votes « Poll closed

1

Metrics

 High Level overview

+ How many requests/sec
there are happening?

 HOw many errors?
* Is the Host Down?

 1000s of metrics may be
collected every second

- Displayed on hundreds of
graphs

Logs

e Structured and Unstructured Format

 Have detailed informmation on what is
happening

» Error logs — contain detailed information
about cause of errors

 Expensive to Produce
 Expensive to Store and Analyze
- Sampling and Filtering is often used

13

\

il —
-

VARY

Y e
| JT

AW A

=4y

v
AT

WVARN Al

o
-

&

=

Distributed
Tracing

 Tracks Application Requests as they

Pass through the system

» Tricky as we need to pass some

Trace _ID between different services

« Span — Named, Timed Operation which

represents part of Workflow

« Great for Root Cause Analyses
- Often Sampled
 Expensive to produce and store

14

Distributed Tracing Example

& Trace f54cbf74bf2¢c24c04ddf800f2b1b8bb3
Started at: 2024-04-01 15:20:58.491 Duration: 26.53ms Status: @HTTP-500

Service & Operation

v I frontend H17P POST (O e -
v I frontend - [PlaceOrds es__PERLL
v I checkoutservice oteldemo Che . 1ceOr [a)] e
v I checkoutservice prepareorderitemss pingQuoteFromCart I
v | checkoutservice oteldemo cartser etCa I 547

~ | cartservice |
- | cartservice H
v | checkoutservice m juctCatalog tProdu 1] |
« | productcatalogservice oteldemo Pr tCat rvice/GetPr 0o
~ | productcatalogservice
v | featureflagservice

- | featureflagservice

15

@

‘Q@;

Profiling

« Where CPU Time or Wall Clock time is
Spent

Single Service or Distributed
Language Developer can Understand
Comparisons are very helpful

Programming language specific support
needed

16

eBPF Based CPU Profiling In

Coroot

CPU usage by instance, cores L a &
200m
150m
100m
50m
Oom
May 02 12:50 12:55 13:00 13:05 13:10 13:15 13:20 13:25 13:30 13:35 13:40

 coredns-787d4945fb-cnjgz |l coredns-787d4945fb-gj9vw

Q, Search ‘

(coredns (4s,100%)

total (4 5, 100%)

el

run

runtime.meall (32 runti fun
-

runtime.goexit0 (E- run
Irntime fncrunn: funt
|
runtime.¢ runti rur

runtime.mstart { rut
runtime.mstart rur
runtime.mstart1 rur

runtime.sysmon rur

n rur re github.com/coredns/coredns/plugin/errors.(*errorHandler).ServeDNS (2 s, 43%)

I B RE HE
1

1] E github.com/col plugi erveDNS (2 s, 43%) E l

-
—
pmermn s s 5 5 s s 5 s IEIENENR

- | r github.com/coredns/s /plugir db iRobin.ServeDNS (2 s, 43%)

ez i _
I syscall.rec github. / /plugin/cache.(*Cache).ServeDNS (1 s, 36%) [
| syscall.Sy gith github.i 1 github. / dns/plugin/loadbal (*RoundR¢
runt . dns/plugin/metrics. er).v -I

runt gith dns/plugin/pkg/d runtime.C runtir |

on S ool e W0 § 1 |
€ Combomimagns (s e 0
oo weTosessene

17

x

Q

i

CPU usage by instance, cores

13:40

baseline _comparison

wn
@
(32
s
(=1
@
™
o
w
o
(3] | — —
o
-lll.
o
@ lll.
w
.-
(]
o
b
om
s
w
e
(3]
&
-IIII
=
o
g8]

12:55

12:50

May 02

I coredns-787d4945fb-cnjgz Il coredns-787d4945fb-gj9vw

Om

£ E E E
e o o o
S b o B
S

[Q, Search

-
O
.B
. -
m:

)
& O
o O
02

Profiling

do'we get all that Observability?

http://drive.google.com/file/d/1I2ReUjcpwx426hJuvQPQuAFwJvIfFiAI/view

Types of
Instrumentation

e Static Instrumentation

 Specific Places in the Code can
Produce Metrics, Emit Logs, Traces

e Linux ProcFS

« Dynamic Instrumentation

» Allow Instrumentation “anything”
dynamically

« dTrace, eBPF

http://drive.google.com/file/d/1C6hWbO8uZstXcJT0d5Kd_WHGrxzUz5ME/view

Prometheus

« Metrics Capture and
Processing

« OpenMetrics merged here

» Client Libraries for many
programming languages

- Easy way to expose Metrics
from your Application

« Coding Required

22

Open Telemetry
(OTEL)

e Collection of APIs, SDKs and Tools

« To Instrument, Generate, Collect
and Export Telemetry Data

- Covers Metrics, Logs, Traces

- Formed through merger of
OpenTracing and OpenCensus
projects

« Coding Required

23

eBPF (Extended
Berkley Packet Filter)

* Not Just Observability

« Dynamic Instrumentation

« User Space and Kernel Space
- Efficient

- Safe

« No Coding Required

eBPF
lllustrated

https://ebpf.io/what-is-ebpf/

Use
Cases

User
Space

Kernel

Networking

A eBPF

Projects

W eBPF

SDKs

W eBPF

kKernel Runtime

Security Observability &
Tracing

b¢ cilium Falco

Ratran % O nMXIE

O GOGC®

Verifier & NIT 0s
Runtime
Maps
Q 2
Kernel Helper API -

- Tracing

- Profiling
ﬂaﬂl’-‘F - Monitoring

Appﬁcaﬂén

- Observability

- Security Controls
- Networking

- Network Security

- Load Balancing
- Behavioral Secunty

25

https://ebpf.io/what-is-ebpf/

Typical SLIs (Service Level Indicators)

» Rate of Requests

« Hard to define what is norm, through anomaly detection can help
 Availability

- Error Rate; High Latency Becomes Error at certain point

* Request Latency
« Looking at 99% or more; Often with breakdown

26

Observability
Problems

- Iaom ortdﬁdag
< _ . *'.. o>
”

-

http://drive.google.com/file/d/1TeEpMum2zQPeEvrOrFzXV0Aq6SLS1xN7/view

Hard to cover all
of Infrastructure

Many solutions support only some
kinds of infrastructure well

29

Swiss Cheese
Observability

Full of Holes!

30

Hard to
Use

Overwhelming
amount of hard to
understand data

31

Silos

 Large organizations have
many groups with different
responsibilities

 Multiple Vendors responsible
for different parts of
infrastructure

- Often using different tools

- Blame game and
responsibility avoidance is
common

Noise

« Too much Noise in Alerting

- Team Fatigue and
Burnout

* Alerts being Ignored or
Mishandled

e |ncreased Downtime
« Poor User Experience

\

|

~

o
ST ST B TS
S WS VNN N N

Overhead).

Instrumentation Slow things down
Observability data hard to store and process
Inadequate Level of Instrumentation

34

Cost

* Proprietary and Cloud
Observability solutions
can get super expensive

« Why do you think Cisco
bought Splunk ?

« High Costs drive
Observability Choices

* Need Open Source,
Efficient Solutions

Coroot — Looking to Solve Some of Those

(040 r‘ootm Product ~ Solutions ~ Pricing Resources Live Demo m

Enable system observability
in minutes, no code changes
required

Metrics, logs, traces, continuous profiling, and SLO-

based alerting, supercharged with predefined
dashboards and inspections.

Start free trial Live demo

or install Coroot Community Edition (Open Source) —

oroot
Editions

Open Source
Enterprise

Zero-instrumentation observability

Metrics, logs, traces, and profiles are gathered automatically by
using e8PF

Coroot provides you with a Service Map that covers 100% of your

® cart (] 3 5
4 . ® cart-db system with no blind spots
® delivery P Predefined inspections audit each application without any
* sLo ® cassandra-main configuration
® Instances 761ps L
2ms
& CPU
7 ips
® Memory db-m
“ Network e
® Logs
l{ @ front-end _ @ kafka / * Deployments _| @ kafka-zookeeper
r / 5
. 4rps
3:“3
/ ® order-db
/ -
/
’/ » ® rabbitmg-server
@ load-test / o @ user

« ® recommendations

« @ user-db
H

https://coroot.com/

37

https://coroot.com/

eBPF Magic

« Automatic Instrumentation with eBPF

 Use to together with conventionally
exposed Linux Data

* Instrument SSL Calls
» L7 Protocol Decoding

38

eBPF-based metrics

® cache i
E&memcached / ns:default

@ cart-db H
~ 52 rps @ 0.5ms Eredis / ns.default

® delivery : |
ns:default RN

@ cart
ns:default

4 12kB/s 1365st
ns:default

@® db-main :
e postgres / ns:default

T~ b55mps & 2ms
110kB/s | 5kB/s = -7 ~_| ®@kafka :
' / - _ ns:default / &kafka

® load-test : | ® front-end

wee

@ order-db-mongodb :
___/""(=mongodb / ns:default

ns:default | ns:default
_
@ rabbitmg-cluster-opera... :
ns:rabbitmg-system
__::} @ rabbitmg-server :
- — ns:default / = rabbitmg
'\ @order : |
e ns:default —~ .
T ~a @ recommendations :
® postgres-operator : | .-~ o ns:default

ns:zalando .

«| @ user-db-mysql :
emysqgl / ns:default

coroot i~#

Node Types & Costs for major
clouds

HEALTH INCIDENTS SERVICE MAP TRACES NODES DEPLOYMENTS COSTS ANOMALIES

Nodes ()

Node cPU Memory Price J ldle cost Cross-AZ traffic Internet egress traffic
de5 usage: [N I 121.18/mo
e oo : 5 $39.09/mo $0.00/mc $0.00/me
c6a.xlarge / 4 vCPU / 8GB reguest - . . I on-demand
de’ usage B 1 | 121.18/mo
nose o - s $34.62/mo $0.00/mc $0.00/mc
c6a.xlarge / 4 vCPU / 8GB reguest i [|| on-dema
de3 usage | B | B 121.18/mo
o R) s $32.68/mc $0.00/mo $0.00/me
coa.xlarge / 4vePu /8B request: | EEENENN B on-dema
de? usage 121.18/mo
neae S = _— $ $27.39/mo $0.00/me $0.00/me
céa.xlarge / 4 vCPU / 8GB request | B | [) redema
ded usage 121.18/mo
node - _ - S $23.90/mc $0.00/mc $0.00/mc
cba.xlarge / 4 vCPU / 8GB request - l - on-dema
TOTAL $605.88/mo $157.69/mo $0.00/mc $0.00/mc
Rows per page: 0 - 1-50f 5
Applications (O
Category J» Usage costs Allocation costs Overprovisioning costs Cross-AZ traffic Internet egress traffic
application $108.47/mo $174.39/mo $92.78/mo — —
monitoring $80.14/mo $1.70/mc $1.29/mo . $0.00/mc
control-plane $51.47/mo $§17.20/mc $11.98/mo - —

TOTAL $240.07/mo $193.29/mo $106.05/mo - $0.00/m¢

Handling

Observability
Problems

Hard to Deploy

No Code, No Configuration to get 90% of the
Value

42

Hard to Use

Less Raw Data, More
Actionable Insights

« Complete
Infrastructure and

S i I OS App Coverage

 Evidence based
Root Cause
Analyses

45

Focus on Objective

N Oise Measures rather than

Vanity Ratios

Overhead

- eBPF — Modern Technology designed
for speed

« Heavily Optimized Open Source
Agents

a7

Cost

* Roll your own
 Flexible data retention options
- State of Art Data Storage Technologies

48

Words of Advice

« Ensure your observability is complete,
with no blind spots

» Ensure you have tools to reliably
identify the components experiencing
issues

 Use skill-appropriate tools, less can be
more in the time crunch

« Have evidence for escalation to
another team or vendor

49

-
Thank you!

Let’'s Connhect!

https:/ /[www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev

http://www.peterzaitsev.com

IN PARTNERSHIP WITH: ‘ @

Red Hat FerretbB

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/

	Slide 1
	Slide 2: What Developers Should Know about Observability
	Slide 3: Let’s Get to Know You
	Slide 4: What is Observability?
	Slide 5: What Is Observability
	Slide 6: Evolution of the Applications
	Slide 7: Why Observability?
	Slide 8: Tasks Observability Helps with
	Slide 9: Alerting
	Slide 10: 4 Pillars of Observability
	Slide 11: What is the Most Useful?
	Slide 12: Metrics
	Slide 13: Logs
	Slide 14: Distributed Tracing
	Slide 15: Distributed Tracing Example
	Slide 16: Profiling
	Slide 17: eBPF Based CPU Profiling in Coroot
	Slide 18: Profiling: Comparison Mode
	Slide 19
	Slide 20: Types of Instrumentation
	Slide 21
	Slide 22: Prometheus
	Slide 23: Open Telemetry (OTEL)
	Slide 24: eBPF (Extended Berkley Packet Filter)
	Slide 25: eBPF Illustrated
	Slide 26: Typical SLIs (Service Level Indicators)
	Slide 27: Observability Problems
	Slide 28
	Slide 29: Hard to cover all of Infrastructure
	Slide 30: Swiss Cheese Observability
	Slide 31: Hard to Use
	Slide 32: Silos
	Slide 33: Noise
	Slide 34: Overhead
	Slide 35: Cost
	Slide 36: Coroot – Looking to Solve Some of Those
	Slide 37: Coroot Editions
	Slide 38: eBPF Magic
	Slide 39: eBPF-based metrics
	Slide 40: Node Types & Costs for major clouds
	Slide 41: Handling Observability Problems
	Slide 42: Hard to Deploy
	Slide 43: Hard to cover all the Infrastructure
	Slide 44: Hard to Use
	Slide 45: Silos
	Slide 46: Noise
	Slide 47: Overhead
	Slide 48: Cost
	Slide 49: Words of Advice
	Slide 50

