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Let’s Get 
to Know 
You
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What is Observability?
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What Is 
Observability
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Evolution of 
the 
Applications 
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2000s

2020s



Why Observability?

• Availability
• Performance
• Cost Management
• Security 
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Tasks 
Observability 
Helps with

• Reactive
• Troubleshooting and 

Optimization
• Proactive

• Finding Problems 
before they are Big 
Problems
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Alerting

Notifies when Problem 
happens
Ensures the Right Escalation 
happens and the problem 
is resolved  
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4 Pillars of 
Observability 

• Metrics
• Logs 
• Tracing 
• Profiling
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What is 
the Most 
Useful?

11



Metrics 
• High Level overview 
• How many requests/sec 

there are happening?
• How many errors? 
• Is the Host Down? 
• 1000s of metrics may be 

collected every second
• Displayed on hundreds of 

graphs
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Logs
• Structured and Unstructured Format
• Have detailed information on what is 

happening
• Error logs – contain detailed information 

about cause of errors
• Expensive to Produce
• Expensive to Store and Analyze 
• Sampling and Filtering is often used 
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Distributed 
Tracing 
• Tracks Application Requests as they 

Pass through the system
• Tricky as we need to pass some 

Trace_ID between different services
• Span – Named, Timed Operation which 

represents part of Workflow 
• Great for Root Cause Analyses
• Often Sampled
• Expensive to produce and store
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Distributed Tracing Example
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Profiling 
• Where CPU Time or Wall Clock time is 

Spent
• Single Service or Distributed 
• Language Developer can Understand
• Comparisons are very helpful
• Programming language specific support 

needed
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eBPF Based CPU Profiling in 
Coroot
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Profiling: 
Comparison 
Mode 
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Instrumentation extended.mp4

http://drive.google.com/file/d/1I2ReUjcpwx426hJuvQPQuAFwJvIfFiAI/view


Types of 
Instrumentation
• Static Instrumentation

• Specific Places in the Code can 
Produce Metrics, Emit Logs, Traces

• Linux ProcFS
• Dynamic Instrumentation

• Allow Instrumentation “anything” 
dynamically

• dTrace,  eBPF
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observability tech2 extended.mp4

http://drive.google.com/file/d/1C6hWbO8uZstXcJT0d5Kd_WHGrxzUz5ME/view


Prometheus 
• Metrics Capture and 

Processing
• OpenMetrics merged here
• Client Libraries for many 

programming languages
• Easy way to expose Metrics 

from your Application
• Coding Required  
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Open Telemetry 
(OTEL)

• Collection of APIs, SDKs and Tools
• To Instrument, Generate, Collect 

and Export Telemetry Data
• Covers Metrics, Logs, Traces
• Formed through merger of 

OpenTracing and OpenCensus 
projects

• Coding Required
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eBPF  (Extended 
Berkley Packet Filter)

• Not Just Observability
• Dynamic Instrumentation
• User Space and Kernel Space 
• Efficient 
• Safe
• No Coding Required 
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eBPF 
Illustrated 
https://ebpf.io/what-is-ebpf/
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https://ebpf.io/what-is-ebpf/


Typical SLIs (Service Level Indicators)
• Rate of Requests

• Hard to define what is norm, through anomaly detection can help
• Availability

• Error Rate;  High Latency Becomes Error at certain point
• Request Latency

• Looking at 99% or more; Often with breakdown 
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Observability 
Problems 
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hard to deploy2 extended.mp4

http://drive.google.com/file/d/1TeEpMum2zQPeEvrOrFzXV0Aq6SLS1xN7/view


Hard to cover all 
of Infrastructure
Many solutions support only some 
kinds of infrastructure well
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Swiss Cheese 
Observability

Full of Holes!
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Hard to 
Use
Overwhelming 
amount of hard to 
understand data
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Silos 
• Large organizations have 

many groups with different 
responsibilities

• Multiple Vendors responsible 
for different parts of 
infrastructure

• Often using different tools 
• Blame game and 

responsibility avoidance is 
common
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Noise 
• Too much Noise in Alerting
• Team Fatigue and 

Burnout
• Alerts being Ignored or 

Mishandled
• Increased Downtime
• Poor User Experience
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Overhead 
Instrumentation Slow things down
Observability data hard to store and process
Inadequate Level of Instrumentation 
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Cost 
• Proprietary and Cloud 

Observability solutions 
can get super expensive

• Why do you think Cisco 
bought Splunk ?

• High Costs drive 
Observability Choices

• Need Open Source, 
Efficient Solutions 
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Coroot – Looking to Solve Some of Those
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Coroot 
Editions
Open Source
Enterprise 
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https://coroot.com/

https://coroot.com/


eBPF Magic 
• Automatic Instrumentation with eBPF
• Use to together with conventionally 

exposed Linux Data
• Instrument SSL Calls
• L7 Protocol Decoding 
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eBPF-based metrics
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Node Types & Costs for major 
clouds
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Handling 
Observability 
Problems 
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Hard to Deploy
No Code, No Configuration to get 90% of the 

Value 
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Hard to cover all the 
Infrastructure

Cover Kubernetes, Containers, Cloud, VM, Bare Metal 
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Hard to Use 
Less Raw Data, More 
Actionable Insights 
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Silos
• Complete 

Infrastructure and 
App Coverage

• Evidence based 
Root Cause 
Analyses
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Noise Focus on Objective 
Measures rather than 
Vanity Ratios
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Overhead
• eBPF – Modern Technology designed 

for speed
• Heavily Optimized Open Source 

Agents 
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Cost
• Roll your own 
• Flexible data retention options
• State of Art Data Storage Technologies
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Words of Advice

• Ensure your observability is complete, 
with no blind spots

• Ensure you have tools to reliably 
identify the components experiencing 
issues

• Use skill-appropriate tools, less can be 
more in the time crunch 

• Have evidence for escalation to 
another team or vendor 
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In partnership with

Thank you! 
Let’s Connect!

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev

http://www.peterzaitsev.com

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/
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