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What is Observability?

e You

)

what is observability

ChatGPT

Observability is a concept in systems theory and engineering that refers to the ability to understand the
internal state of a system based on its external outputs. In simpler terms, it's about how well you can
observe and understand what's happening inside a system just by looking at its behavior from the

outside.

In software engineering and computer science, observability is particularly important in the context of
complex distributed systems, where traditional debugging techniques might not be sufficient. It
involves collecting and analyzing data from various sources such as logs, metrics, traces, and events to

gain insights into the performance, health, and behavior of the system.
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Why Observability?

- Availability
« Performance
« Cost Management

* Security



Tasks
Observability
Helps with

 Reactive
 Troubleshooting and
Optimization
 Proactive

* Finding Problems
before they are Big
Problems
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Notifies when Problem
happens

Ensures the Right Escalation
happens and the problem
is resolved




4 Pillars of
Observability |

 Metrics
* Logs

 Tracing
» Profiling



aﬁ Peter Zaitsev « You
: g Entrepreneur | Driving Success with MySQL, MariaDB, MongoDB & Post...

\
1d+ &

o
W h q t I S What is most important pillar of Observability ? #observability

What is most important pillar of #observability

t h e M o St You can see how people vote. Learn more

Q Metrics @ 51%
U Sefu I o Traces @ 13%
Logs @ 26%
Profiling @ 10%

220 votes « Poll closed
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Metrics

 High Level overview

+ How many requests/sec
there are happening?

 HOw many errors?
* Is the Host Down?

 1000s of metrics may be
collected every second

- Displayed on hundreds of
graphs




Logs

e Structured and Unstructured Format

 Have detailed informmation on what is
happening

» Error logs — contain detailed information
about cause of errors

 Expensive to Produce
 Expensive to Store and Analyze
- Sampling and Filtering is often used

13
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Distributed
Tracing

 Tracks Application Requests as they

Pass through the system

» Tricky as we need to pass some

Trace _ID between different services

« Span — Named, Timed Operation which

represents part of Workflow

« Great for Root Cause Analyses
- Often Sampled
 Expensive to produce and store

14



Distributed Tracing Example

& Trace f54cbf74bf2¢c24c04ddf800f2b1b8bb3
Started at: 2024-04-01 15:20:58.491 Duration: 26.53ms Status: @HTTP-500

Service & Operation

v I frontend H17P POST (O e -
v I frontend - [ PlaceOrds es______________________________________________PERLL
v I checkoutservice oteldemo Che . 1ceOr [a)] e
v I checkoutservice prepareorderitemss pingQuoteFromCart I
v | checkoutservice oteldemo cartser etCa I 547

~ | cartservice |
- | cartservice H
v | checkoutservice m juctCatalog tProdu 1] |
« | productcatalogservice oteldemo Pr tCat rvice/GetPr 0o
~ | productcatalogservice
v | featureflagservice

- | featureflagservice
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Profiling

« Where CPU Time or Wall Clock time is
Spent

Single Service or Distributed
Language Developer can Understand
Comparisons are very helpful

Programming language specific support
needed

16



eBPF Based CPU Profiling In

Coroot
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Profiling



do'we get all that Observability?


http://drive.google.com/file/d/1I2ReUjcpwx426hJuvQPQuAFwJvIfFiAI/view

Types of
Instrumentation

e Static Instrumentation

 Specific Places in the Code can
Produce Metrics, Emit Logs, Traces

e Linux ProcFS

« Dynamic Instrumentation

» Allow Instrumentation “anything”
dynamically

« dTrace, eBPF





http://drive.google.com/file/d/1C6hWbO8uZstXcJT0d5Kd_WHGrxzUz5ME/view

Prometheus

« Metrics Capture and
Processing

« OpenMetrics merged here

» Client Libraries for many
programming languages

- Easy way to expose Metrics
from your Application

« Coding Required

22



Open Telemetry
(OTEL)

e Collection of APIs, SDKs and Tools

« To Instrument, Generate, Collect
and Export Telemetry Data

- Covers Metrics, Logs, Traces

- Formed through merger of
OpenTracing and OpenCensus
projects

« Coding Required

23



eBPF (Extended
Berkley Packet Filter)

* Not Just Observability

« Dynamic Instrumentation

« User Space and Kernel Space
- Efficient

- Safe

« No Coding Required




eBPF
lllustrated

https://ebpf.io/what-is-ebpf/

Use
Cases

User
Space

Kernel

Networking

A eBPF

Projects

W eBPF

SDKs

W eBPF

kKernel Runtime

Security Observability &
Tracing

b¢ cilium  Falco

Ratran % O nMXIE

O GOGC®

Verifier & NIT 0s
Runtime
Maps
Q 2
Kernel Helper API -

- Tracing

- Profiling
ﬂaﬂl’-‘F - Monitoring

Appﬁcaﬂén

- Observability

- Security Controls
- Networking

- Network Security

- Load Balancing
- Behavioral Secunty
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https://ebpf.io/what-is-ebpf/

Typical SLIs (Service Level Indicators)

» Rate of Requests

« Hard to define what is norm, through anomaly detection can help
 Availability

- Error Rate; High Latency Becomes Error at certain point

* Request Latency
« Looking at 99% or more; Often with breakdown

26



Observability
Problems
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http://drive.google.com/file/d/1TeEpMum2zQPeEvrOrFzXV0Aq6SLS1xN7/view

Hard to cover all
of Infrastructure

Many solutions support only some
kinds of infrastructure well

29



Swiss Cheese
Observability

Full of Holes!

30



Hard to
Use

Overwhelming
amount of hard to
understand data

31



Silos

 Large organizations have
many groups with different
responsibilities

 Multiple Vendors responsible
for different parts of
infrastructure

- Often using different tools

- Blame game and
responsibility avoidance is
common




Noise

« Too much Noise in Alerting

- Team Fatigue and
Burnout

* Alerts being Ignored or
Mishandled

e |ncreased Downtime
« Poor User Experience
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Overhead ).

Instrumentation Slow things down
Observability data hard to store and process
Inadequate Level of Instrumentation

34



Cost

* Proprietary and Cloud
Observability solutions
can get super expensive

« Why do you think Cisco
bought Splunk ?

« High Costs drive
Observability Choices

* Need Open Source,
Efficient Solutions




Coroot — Looking to Solve Some of Those

(040 r‘ootm Product ~ Solutions ~ Pricing Resources Live Demo m

Enable system observability
in minutes, no code changes
required

Metrics, logs, traces, continuous profiling, and SLO-

based alerting, supercharged with predefined
dashboards and inspections.

Start free trial Live demo

or install Coroot Community Edition (Open Source) —




oroot
Editions

Open Source
Enterprise

Zero-instrumentation observability

Metrics, logs, traces, and profiles are gathered automatically by
using e8PF

Coroot provides you with a Service Map that covers 100% of your

® cart (] 3 5
4 . ® cart-db system with no blind spots
® delivery P Predefined inspections audit each application without any
* sLo ® cassandra-main configuration
® Instances 761ps L
2ms
& CPU
7 ips
® Memory db-m
“ Network e
® Logs
l{ @ front-end _ @ kafka / * Deployments _| @ kafka-zookeeper
r / 5
. 4rps
3:“3
/ ® order-db
/ -
/
’/ » ® rabbitmg-server
@ load-test / o @ user

« ® recommendations

« @ user-db
H

https://coroot.com/
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eBPF Magic

« Automatic Instrumentation with eBPF

 Use to together with conventionally
exposed Linux Data

* Instrument SSL Calls
» L7 Protocol Decoding

38



eBPF-based metrics

® cache i
E&memcached / ns:default

@ cart-db H
~ 52 rps @ 0.5ms Eredis / ns.default

® delivery : |
ns:default RN

@ cart
ns:default

4 12kB/s 1365st
ns:default

@® db-main :
e postgres / ns:default

T~ b55mps & 2ms
110kB/s | 5kB/s = -7 ~_| ®@kafka :
' / - _ ns:default / &kafka

® load-test : | ® front-end

wee

@ order-db-mongodb :
___/""( =mongodb / ns:default

ns:default | ns:default
_
@ rabbitmg-cluster-opera... :
ns:rabbitmg-system
__::} @ rabbitmg-server :
- — ns:default / = rabbitmg
'\ @order : |
e ns:default —~ .
T ~a @ recommendations :
® postgres-operator : | .-~ o ns:default

ns:zalando .

«| @ user-db-mysql :
emysqgl / ns:default

coroot i~#




Node Types & Costs for major
clouds

HEALTH INCIDENTS SERVICE MAP TRACES NODES DEPLOYMENTS COSTS ANOMALIES

Nodes ()

Node cPU Memory Price J ldle cost Cross-AZ traffic Internet egress traffic
de5 usage: [N I 121.18/mo
e oo : 5 $39.09/mo $0.00/mc $0.00/me
c6a.xlarge / 4 vCPU / 8GB  reguest - . . I on-demand
de’ usage B 1 | 121.18/mo
nose o - s $34.62/mo $0.00/mc $0.00/mc
c6a.xlarge / 4 vCPU / 8GB  reguest i [ || on-dema
de3 usage | B | B 121.18/mo
o R ) s $32.68/mc $0.00/mo $0.00/me
coa.xlarge / 4vePu /8B request: | EEENENN B on-dema
de? usage 121.18/mo
neae S = _— $ $27.39/mo $0.00/me $0.00/me
céa.xlarge / 4 vCPU / 8GB  request | B | [ ) redema
ded usage 121.18/mo
node - _ - S $23.90/mc $0.00/mc $0.00/mc
cba.xlarge / 4 vCPU / 8GB  request - l - on-dema
TOTAL $605.88/mo  $157.69/mo $0.00/mc $0.00/mc
Rows per page: 0 - 1-50f 5
Applications (O
Category J» Usage costs Allocation costs Overprovisioning costs Cross-AZ traffic Internet egress traffic
application $108.47/mo $174.39/mo $92.78/mo — —
monitoring $80.14/mo $1.70/mc $1.29/mo . $0.00/mc
control-plane $51.47/mo $§17.20/mc $11.98/mo - —

TOTAL $240.07/mo $193.29/mo $106.05/mo - $0.00/m¢



Handling

Observability
Problems




Hard to Deploy

No Code, No Configuration to get 90% of the
Value

42






Hard to Use

Less Raw Data, More
Actionable Insights




« Complete
Infrastructure and

S i I OS App Coverage

 Evidence based
Root Cause
Analyses

45



Focus on Objective

N Oise Measures rather than

Vanity Ratios




Overhead

- eBPF — Modern Technology designed
for speed

« Heavily Optimized Open Source
Agents

a7




Cost

* Roll your own
 Flexible data retention options
- State of Art Data Storage Technologies

48



Words of Advice

« Ensure your observability is complete,
with no blind spots

» Ensure you have tools to reliably
identify the components experiencing
issues

 Use skill-appropriate tools, less can be
more in the time crunch

« Have evidence for escalation to
another team or vendor

49
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Thank you!

Let’'s Connhect!
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https://twitter.com/PeterZaitsev
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