
©2025 Percona 

Deploy a MongoDB cluster on 
Kubernets using Percona Operator

Corrado Pandiani
Senior Architect

Milan, May 26th 2025



©2025 Percona 

This is me
● Open Source enthusiast 
● MySQL and MongoDB expert
● Worked in the past as DBA, Web Developer, Project 

Manager, CRM and BI developer and instructor
● Spent 22 years in the football industry for a worldwide 

popular team
● Perconian since early 2018

Corrado Pandiani
Senior Architect



©2025 Percona 

1. Containers

2. Kubernetes

3. Percona Operator for MongoDB

4. Deploy a MongoDB cluster

Agenda



©2025 Percona 

Containers



©2025 Percona 

In the beginning

● There were physical servers (i.e.: "bare metal")

○ Operating Systems

○ Applications

● Scaling == Add more hardware

● Inefficient resource usage



©2025 Percona 

Then Virtual Machines

● Simulate physical machine

● Provide local file system

● Accessible over network

● Full/independent OS ("guest OS")

● Virtualized device drivers

● Resource and memory 

management

● Requires a hypervisor



©2025 Percona 

Containers (LXC)
● OS-level virtualization method

● Allows running multiple, isolated systems, using a single kernel ("host")

● Kernel provides cgroup (control group) functionality

○ CPU/memory/disk/network

○ No need for complete OS install

○ No device emulation/hypervisor

● "Lightweight" virtual machine

● Local file system

● Accessible over network

● Container itself is isolated process

● "Bare Metal" performance



©2025 Percona 

Containers (Docker)
● Open Source PAAS project 

○ Initially built to extend LXC 

○ LXC was eventually replaced 

by the libcontainer library 

(Go) 

● Can package applications and 

dependencies as "images"

● "git-like" capabilities for tracking 

versions of each container

● Build new container using others 

as base

● Ecosystem for sharing pre-build 

containers

● The "easy button"



©2025 Percona 

Containers pros and cons

● Pros

○ No independent OS 

overhead

○ "jailed" environment

○ All-in-one deployment

● Cons

○ Hard to manage multiple 

containers

○ Disk Persistence is 

complicated

○ Not fully isolated workload



©2025 Percona 

Kubernetes



©2025 Percona 

Containers are simple enough for single use

● That's easy for 5-10 containers on a single host

○ ...but what about 50-100 containers...

○ ...on 20 different hosts!



©2025 Percona 

Containers Orchestration

● Now you have to run hundreds of containers

○ across, potentially, hundreds of hosts

● Health checks on the containers

● Launching X copies for a particular container

● Scaling the number of containers up and down depending on 

load

● Performing rolling updates across containers

● Services in container X discovering services in Y



©2025 Percona 

What is Kubernetes?

● Greek for "captain", or "navigator"

● Created by Google, 2014

○ Heavily influenced by Google's Borg system

● Written in Go

● 2015, Google partnered with the Linux Foundation to form the 

Cloud Native Computing Foundation (CNCF)

○ CNCF is the current maintainer

● A cluster, consisting of at least one control plane and multiple 

worker machines ("nodes")



©2025 Percona 

Architecture



©2025 Percona 

Peas in a Pod
● A unit of deployment

○ If single containers are deployed, then you can generally replace the word "pod" 

with "container" and accurately understand the concept

● A group of one or more containers, with shared storage/network, and a specification 

for how to run the containers

● A pod's containers are always co-located and co-scheduled, and run in a shared 

context

● A pod receives a unique IP to prevent port conflicts



©2025 Percona 

Kubernetes Flavors

● Open Source

○ Rancher

○ Docker Kubernetes Service

● Cloud Managed

○ Amazon EKS

○ Google GKE

○ Azure AKS

● Enterprise

○ OpenShift (Red Hat)

○ VMWare Tanzu

○ Mirantis



©2025 Percona 

Kubernetes on your laptop

● Run a minimal installation with all K8s components in a single machine

● Some alternatives:

○ K3s

○ Kind (Kubernetes in Docker)

○ Microk8s

○ Minikube



©2025 Percona 

Kubernetes Operators

● An Operator is a method of packaging, deploying and managing a 

Kubernetes application

● Analogous to a systemd service, but manages an application deployed 

on Kubernetes

● The Operator itself runs in a container inside a pod



©2025 Percona 

Percona Operator for 
MongoDB



©2025 Percona 

Kubernetes Operator for MongoDB

● Automates the creation, modification, or deletion of Percona Server for 

MongoDB (PSMDB) replica sets or sharded clusters.

● Based on best practices for the configuration of PSMDB, the Operator provides 

many benefits; but saving time, and having a standard environment are the 

most important

● Supported platforms*

○ Google Kubernetes Engine (GKE) 

○ Amazon Elastic Container Service for Kubernetes (EKS) 

○ OpenShift Container Platform 

○ Azure Kubernetes Service (AKS) 

○ Minikube 

(*) Other Kubernetes platforms may also work but have not been tested



©2025 Percona 

Minimal requirements

● A cluster running an officially supported platform contains at least 3 nodes 

and the following resources:

○ 2 GB of RAM

○ 2 CPU threads per Node for Pods provisioning

○ 60GB of available storage for Private Volumes provisioning

● Consider using 4 CPU / 6 GB of RAM if sharding is turned on (the default 

behavior)



©2025 Percona 

Installation Options

● We recommend installing the Operator with the kubectl command line utility 

● It is the universal way to interact with Kubernetes

● Alternatively, you can install it using Helm

○ Helm is the package manager for Kubernetes

○ A Helm chart is a package that contains all the necessary resources to 

deploy an application to a Kubernetes cluster

○ You can find Percona Helm charts in percona/percona-helm-charts 

repository in Github

https://github.com/percona/percona-helm-charts


©2025 Percona 

Deploy a MongoDB 
cluster



©2025 Percona 

Quick installation

● Create a namespace on Kubernetes and make it the default
$ kubectl create namespace <namespace name>

$ kubectl config set-context $(kubectl config current-context) 

--namespace=<namespace name>

● Deploy the operator
$ kubectl apply --server-side -f 

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/d

eploy/bundle.yaml

● Clone the git repository
$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator



©2025 Percona 

Quick installation

● Edit the Custom Resource file deploy/cr.yaml 

● Deploy the MongoDB Cluster
$ kubectl apply -f deploy/cr.yaml

● Check when the cluster is ready status. It means it is deployed correctly
$ kubectl get psmdb



©2025 Percona 

Connect to MongoDB cluster

● List the secret objects
$ kubectl get secrets -n <namespace>

● View the Secret contents to retrive the admin user credentials
$ kubectl get secret my-cluster-name-secrets -o yaml

● The actual login name and password on the output are base64-encoded. To 

bring it back to a human-readable form, run:
$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode

$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode



©2025 Percona 

Connect to MongoDB cluster

● Run a container with a MongoDB client and connect its console output to your 

terminal.
$ kubectl run -i --rm --tty percona-client 

--image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il



©2025 Percona 

Connect to MongoDB cluster

● Now run mongosh tool inside the percona-client command shell using the 

admin user credentials you obtained from the Secret

If sharding is on
$ mongosh 

"mongodb://clusterAdmin:clusterAdminPassword@my-cluster-name-mongos.<namespacename>

.svc.cluster.local/admin?ssl=false"

If sharding is off
$ mongosh 

"mongodb+srv://clusterAdmin:clusterAdminPassword@my-cluster-name-rs0.<namespacename

>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"



©2025 Percona 

Thank You
corrado.pandiani@percona.com


