

Deploy a MongoDB cluster on Kubernets using Percona Operator

Corrado Pandiani Senior Architect

Milan, May 26th 2025

Corrado Pandiani Senior Architect

This is me

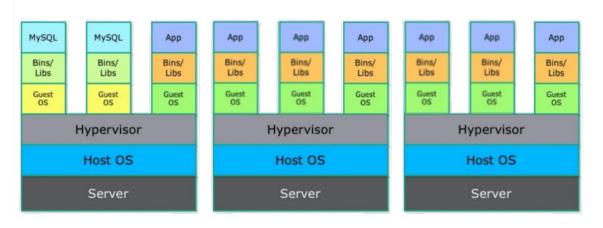
- Open Source enthusiast
- MySQL and MongoDB expert
- Worked in the past as DBA, Web Developer, Project Manager, CRM and BI developer and instructor
- Spent 22 years in the football industry for a worldwide popular team
- Perconian since early 2018

- 1. Containers
- 2. Kubernetes
- 3. Percona Operator for MongoDB
- 4. Deploy a MongoDB cluster

Containers

In the beginning

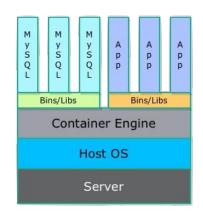
- There were physical servers (i.e.: "bare metal")
 - Operating Systems
 - Applications
- Scaling == Add more hardware
- Inefficient resource usage


Application	Application	Application
Host OS	Host OS	Host OS
Server	Server	Server

Then Virtual Machines

- Simulate physical machine
- Provide local file system
- Accessible over network
- Full/independent OS ("guest OS")

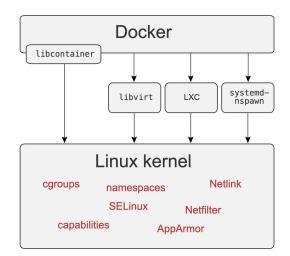
- Virtualized device drivers
- Resource and memory
 management
- Requires a hypervisor



Virtual Machines

Containers (LXC)

- OS-level virtualization method
- Allows running multiple, isolated systems, using a single kernel ("host")
- Kernel provides cgroup (control group) functionality
 - CPU/memory/disk/network
 - No need for complete OS install
 - No device emulation/hypervisor
- "Lightweight" virtual machine
- Local file system
- Accessible over network
- Container itself is isolated process
- "Bare Metal" performance



Containers

Containers (Docker)

- Open Source PAAS project
 - Initially built to extend LXC
 - LXC was eventually replaced by the libcontainer library (Go)

- Can package applications and dependencies as "images"
- "git-like" capabilities for tracking versions of each container
- Build new container using others as base
- Ecosystem for sharing pre-build containers
- The "easy button"

Containers pros and cons

- Pros
 - No independent OS overhead
 - "jailed" environment
 - All-in-one deployment

- Cons
 - Hard to manage multiple containers
 - Disk Persistence is

complicated

• Not fully isolated workload

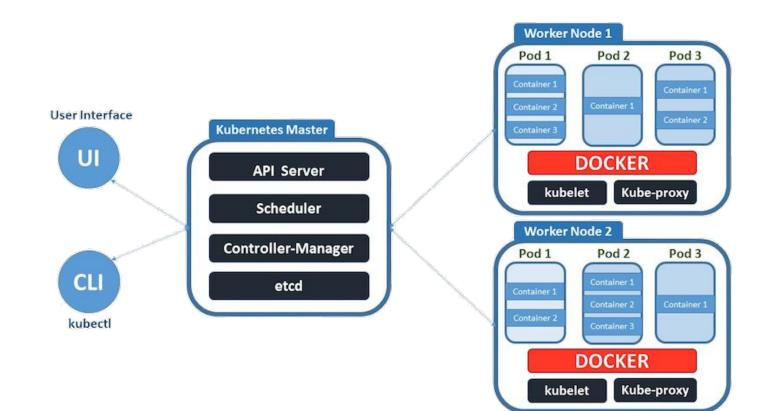
Kubernetes

Containers are simple enough for single use

- That's easy for 5-10 containers on a single host
 - ...but what about 50-100 containers...
 - ...on 20 different hosts!

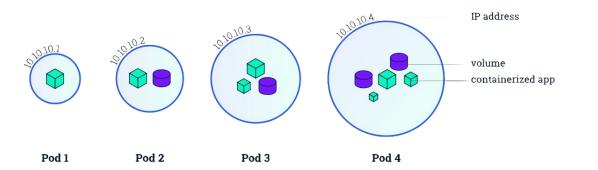
Containers Orchestration

- Now you have to run hundreds of containers
 - o across, potentially, hundreds of hosts
- Health checks on the containers
- Launching X copies for a particular container
- Scaling the number of containers up and down depending on load
- Performing rolling updates across containers
- Services in container X discovering services in Y



What is Kubernetes?

- Greek for "captain", or "navigator"
- Created by Google, 2014
 - Heavily influenced by Google's Borg system
- Written in Go
- 2015, Google partnered with the Linux Foundation to form the Cloud Native Computing Foundation (CNCF)
 - CNCF is the current maintainer
- A cluster, consisting of at least one control plane and multiple worker machines ("nodes")


Architecture

Peas in a Pod

- A unit of deployment
 - If single containers are deployed, then you can generally replace the word "pod" with "container" and accurately understand the concept
- A group of one or more containers, with shared storage/network, and a specification for how to run the containers
- A pod's containers are always co-located and co-scheduled, and run in a shared context
- A pod receives a unique IP to prevent port conflicts

Kubernetes Flavors

- Open Source
 - Rancher
 - Docker Kubernetes Service
- Cloud Managed
 - Amazon EKS
 - Google GKE
 - Azure AKS
- Enterprise
 - OpenShift (Red Hat)
 - VMWare Tanzu
 - Mirantis

Kubernetes on your laptop

- Run a minimal installation with all K8s components in a single machine
- Some alternatives:
 - **K3s**
 - Kind (Kubernetes in Docker)
 - Microk8s
 - Minikube

Kubernetes Operators

- An Operator is a method of packaging, deploying and managing a Kubernetes application
- Analogous to a *systemd* service, but manages an application deployed on Kubernetes
- The Operator itself runs in a container inside a pod

Percona Operator for MongoDB

PERCONA

Kubernetes Operators

Kubernetes Operator for MongoDB

- Automates the creation, modification, or deletion of Percona Server for MongoDB (PSMDB) replica sets or sharded clusters.
- Based on best practices for the configuration of PSMDB, the Operator provides many benefits; but saving time, and having a standard environment are the most important
- Supported platforms*
 - Google Kubernetes Engine (GKE)
 - Amazon Elastic Container Service for Kubernetes (EKS)
 - OpenShift Container Platform
 - Azure Kubernetes Service (AKS)
 - Minikube

(*) Other Kubernetes platforms may also work but have not been tested

Minimal requirements

- A cluster running an officially supported platform contains at least 3 nodes and the following resources:
 - \circ 2 GB of RAM
 - 2 CPU threads per Node for Pods provisioning
 - 60GB of available storage for Private Volumes provisioning
- Consider using 4 CPU / 6 GB of RAM if sharding is turned on (the default behavior)

Installation Options

- We recommend installing the Operator with the **kubect1** command line utility
- It is the universal way to interact with Kubernetes
- Alternatively, you can install it using **Helm**
 - Helm is the package manager for Kubernetes
 - A Helm chart is a package that contains all the necessary resources to deploy an application to a Kubernetes cluster
 - You can find Percona Helm charts in <u>percona/percona-helm-charts</u> repository in Github

Deploy a MongoDB cluster

PERCONA

Kubernetes Operators

Quick installation

- Create a namespace on Kubernetes and make it the default
 - \$ kubectl create namespace <namespace name>
 - \$ kubectl config set-context \$(kubectl config current-context)
 - --namespace=<namespace name>

• Deploy the operator

\$ kubectl apply --server-side -f

https://raw.githubusercontent.com/percona/percona-server-mongodb-operator/v1.18.0/d
eploy/bundle.yaml

• Clone the git repository

\$ git clone -b v1.18.0 https://github.com/percona/percona-server-mongodb-operator

Quick installation

- Edit the Custom Resource file deploy/cr.yaml
- Deploy the MongoDB Cluster
 - \$ kubectl apply -f deploy/cr.yaml
- Check when the cluster is **ready** status. It means it is deployed correctly
 - \$ kubectl get psmdb

Connect to MongoDB cluster

• List the secret objects

\$ kubectl get secrets -n <namespace>

• View the Secret contents to retrive the admin user credentials

\$ kubectl get secret my-cluster-name-secrets -o yaml

• The actual login name and password on the output are base64-encoded. To bring it back to a human-readable form, run:

\$ echo 'MONGODB_DATABASE_ADMIN_USER' | base64 --decode

\$ echo 'MONGODB_DATABASE_ADMIN_PASSWORD' | base64 --decode

Connect to MongoDB cluster

- Run a container with a MongoDB client and connect its console output to your terminal.
 - \$ kubectl run -i --rm --tty percona-client

--image=percona/percona-server-mongodb:7.0.14-8 --restart=Never -- bash -il

Connect to MongoDB cluster

 Now run mongosh tool inside the percona-client command shell using the admin user credentials you obtained from the Secret
 <u>If sharding is on</u>

\$ mongosh

"mongodb://clusterAdmin:clusterAdminPassword@my-cluster-name-mongos.<namespacename>
.svc.cluster.local/admin?ssl=false"

<u>If sharding is off</u>

\$ mongosh

"mongodb+srv://clusterAdmin:clusterAdminPassword@my-cluster-name-rs0.<namespacename</pre>

>.svc.cluster.local/admin?replicaSet=rs0&ssl=false"

Thank You

corrado.pandiani@percona.com