
Harnessing the Power of
AI with Postgres

August 2025, PG Armenia x Percona University

Emma Saroyan, Generative AI for Web Development Co-author

Generative Artificial Intelligence

LLMs

OpenAI APIs

ChatGPT

Vector Database

RAG

Embeddings

AI Agents

Retrieval Augmented Generation (RAG)

● The go to database for implementing RAG is a vector database or vector store
● RAG you could pair with any database

Retrieval Augmented Generation/ Vector Search

● When implementing RAG with vectors, whatever LLM you choose to create
the embeddings is also the LLM you use to create the embedding of your
questions

● When you are asking a question about your data given to the LLM it gives you
this embedding, and this embedding more or less is compared with all the
data

Similarity Search

 Words like “Wolf” and “Dog” should be close in meaning

With vectors, you can store them as points in space

and measure distance (cosine similarity, Euclidean distance).

This allows semantic search (finding by meaning,

not just exact keywords)

Embeddings (They are vectors!)

● A way to represent complex things

(like words or pictures) as numbers

that computers can easily compare

and calculate with

Vector Databases

● An LLM like ChatGPT creates a vector embedding of the data which is
assigning a numerical value to each one of the points of data

Why did vectors come into play?

● They became popular because traditional data formats weren’t
enough for modern AI tasks like search, recommendations, and
chatbots.

LLM Pipeline with RAG
Here’s where RAG fits in:

1. User Query (Prompt)
"What’s the latest feature in Postgres 16?"

2. Embed the Query
Convert it into a vector representation.

3. Retrieve Relevant Data
Use the embedding to search a vector database (like pgvector, Pinecone, Weaviate, etc.) for
semantically relevant documents/snippets.

4. Augment the Prompt
Combine the user query plus the retrieved documents into a new enriched prompt.

LLM Pipeline with RAG

Pgvector

Pgvector makes PostgreSQL function as a vector database

RAG with PostgreSQL

RAG (Retrieval-Augmented Generation) = LLM + external knowledge base.

● The LLM generates text

● but before answering, it retrieves relevant context from your data (docs, FAQs, code, etc.)

● Retrieval is usually based on vector similarity search (finding text chunks that are semantically
closest to the query)

Why Pgvector?

● It enables RAG to work well at scale

Where does Pgvector come in?

Without something like pgvector, your RAG system is not efficient to store and search embeddings

RAG alone is an idea / method

RAG + pgvector is an actual working system, because you can:

● Store embeddings (vector representations of your documents)

● Perform similarity search directly in Postgres

● Keep structured data + unstructured embeddings in one place

Why Pgvector?

● Pgvector lets you implement RAG directly inside Postgres,

no need for extra infrastructure

When to use RAG with Pgvector?

● If your app needs to search across

a large collection of documents

● If you want fast and relevant retrieval

(semantic, not just keyword)

● If you already use Postgres and prefer not

to introduce a new database

Check out my latest book

● Published in December 2024

Let’s connect!

